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Introduction  
 
Testing is carried out primarily for unearthing any and all defects present in the system 
and to prevent a defective product reaching the customers. Secondarily, testing is also 
carried out to convince the customer that the product conforms to and fulfills the 
specifications and the functionality specified and agreed to. 
 
Software Testing is recognized as a very important activity in software development. Of 
late, the importance of independent testing – that is testing by persons not involved in 
the development of software – is increasingly being recognized, so much so, software 
companies specialized only in software testing are established and are doing good 
business. Also significant is the fact that - as the complexity and size of the software 
increased multi-fold – so has the complexity of testing as well as the types of testing 
increased. As a result, there is a paradigm shift in the estimation of testing effort from 
being taken as a percentage of development effort, to independent size estimation and 
effort estimation.  
 
As testing is so varied and diverse, it is not possible to directly jump into discussion 
about Test Effort Estimation without a brief discussion about the topic of Testing itself. 
 
Testing Basics 
 
There are basically two techniques of testing 
 

1. White Box  
2. Box Testing 

 
White Box testing involves stepping thru every line of code, and every branch in the 
code.  To use this technique, the tester should be knowledgeable about the 
programming language and should know the structure of the program. 
 
In Black Box testing, a set of inputs is given to the software and the outputs delivered by 
the software are compared with the expected outputs. To use this techniques, the tester 
should have knowledgeable about the functionality of the system and should be able to 
use the computer.  
 
Testing Scenarios  
 
Software testing as stated above is carried in two independent scenarios –  
 

1. Project Testing or Embedded Testing – that is testing, which is carried out as part 
of a software development project – this is carried out to ensure that the 
development work is defect-free. 

2. Product Testing – testing that is carried out for a COTS (Commercial Off-The-
Shelf) software product. This is to ensure that the products work without any 
defects in a variety of customer scenarios. 

 
These scenarios are described below. 



 

Project Testing / Embedded Testing 
 
When software is developed as product that is delivered to a single client or intended to 
be used at a single location, the following testing takes place, in addition to software 
inspections (peer reviews) –  
 

1. Unit Testing – this is certainly carried out by the person who wrote the code and 
by an independent peer using white box testing technique. 

2. Integration Testing – carried out either as one-off (that is, when all integration is 
completed) of incrementally (that is, whenever one unit of software integrated 
and continued till all units are integrated). Black Box testing is used in one-off 
Integration Testing and white box testing can be, perhaps, used in incremental 
integration testing 

3. System Testing to ensure that the software works in all intended target systems. 
4. User Acceptance Testing to obtain customer sign-off so that software can be 

delivered and payments received 
 
Optionally, many other tests can be conducted at the behest of the customer. 
 
Product Testing 
 
Product would be developed as a project first and would undergo all the tests that a 
project normally undergoes, namely, unit, integration, and system testing. System testing 
is carried out more rigorously and on multiple systems. In addition, it needs some more 
rigorous tests. These are –  
 

1. Load Testing – in web applications and multi-user applications, large numbers 
of users are logged in and try to use the software in a random manner. The 
objective is to see if the software is managing multiple requests and serving up 
accurate results or mixing them up. . This unearths the issues connected with the 
bandwidth, database, sufficiency of RAM, hard disk etc 

2. Volume Testing – subject the software to a high volume of data and see the 
performance, whether it degrades. 

3. Functional Testing – test that all functions expected of the software are 
functioning correctly. 

4. End-to-End Testing – in this type of testing, one entity is tracked from birth to 
death in the application. For example, in a payroll application, an employee joins 
the system; then is promoted; then is demoted; salary increases are effected, 
salary decreases are effected; kept in abeyance; transferred, then retired, 
dismissed, terminated and so on to ensure that the state transitions designed in 
the applications happen as desired 

5. Parallel Testing – a number of users using the same function and are either 
inputting or requesting same data. This brings out the system’s ability to handle 
requests at the same time and preserving the data integrity.  

6. Concurrent Testing – Concurrent testing is carried out to unearth issues when 
two or more users use the same functionality and update or modify same data 
with different values at the same time – normally using a testing tool. For 
example, take ticket reservation scenario, there is only one seat and it is shown 
as available to two people. When both confirm purchase, the system should give 
to only one and reject the other request. It should not happen that money is 



collected from both credit cards and reserve for only one – the credit card 
transaction must be reversed for the rejected party. Scenarios like this will be 
tested. 

7. Stress Testing – cause stress to the software by making expected resources 
unavailable or causing deadlock like scenarios or not releasing resources and so 
on to ensure that the software has routines built in to handle such stress. This will 
bring out software responses for events like machine-rest, Internet disconnection, 
server timeouts etc. 

8. Positive Testing – test the software as specified and not trying any negative 
acts – to ensure that all defined functions are performing. Used mostly for 
customer / end user acceptance testing. 

9. Negative Testing – using the software in a manner that is not expected to be 
used – this will bring out all hidden defects in the software. This is to ensure even 
malicious usage would not affect the software or data integrity. 

10. User Manual Testing – use the software conforming to the user manual to 
ensure that they both are in synch with each other 

11. Deployment Testing – Simulate the target environment and deploy the software 
and ensure that deployment specified is appropriate. 

12. Sanity Testing – this cursory testing to ensure that the components, of software 
package, are complete and are of appropriate versions, carried out before 
delivery or before making a software-build. 

13. Regression Testing – testing carried out after unearthed defects are fixed 
14. Security Testing – testing to ensure vulnerability against the threat of viruses and 

spy-ware 
15. Performance Testing – testing to ensure that the response times are in 

acceptable range 
16. Usability Testing – testing the software for different types of usage to ensure 

that it satisfactorily fulfills the requirements of specified functional areas 
17. Install / uninstall Testing – test the software on all target platforms to ensure 

that install and uninstall operations are satisfactorily performed 
18. Comparison Testing – testing the product with competing products to contrast 

the differences for determining the relative position of the product 
19. Intuitive Testing – testing without reference to user manuals to see if the 

product can be used without much reference to user guides 
 
It is rare that all the above types of testing are carried out for every project that is 
executed in the organization. But it is common for product testing to include many of the 
above tests. 
 
Organizations carry out some combination of the types of testing described above. 
Normally every organization conducts the following types of testing –  
 

1. Functional Testing to ensure that all the functionalities allocated to the software 
are working and there are no inaccuracies, when used properly 

2. Integration testing – to ensure that the coupling between various software 
modules is in order 

3. Positive Testing / Acceptance Testing to get the software accepted by the 
client 

4. Load Testing to ensure that the system does not crash when heavy loads are 
placed on it 

 



Organizations carry out the remaining types of testing, sometimes, on a “if time and 
budget are available” –– basis” or “if mandated” basis. 
 

The “How” of testing 
 
When we come to methodology of testing, we find –  
 

1. Test Cases Based Testing – there is a set of test cases and testing is carried 
out only against the test cases 

2. Intuitive Testing – there may be a general description of the functionality and 
suggestions/guidelines for intuitive testing, as to how to go about unearthing 
defects. Testing is carried out using the experience and intuition of the tester. 
Some amount of creativity or common sense is expected from the tester. 

 
For any software project there would always be a high-level test plan. For every intended 
testing, there ought to be set of test cases against which testing is carried out. But 
consider the implications –  
 

1. For every numeric (including date type data) data input, we need to have five test 
cases – using the Partitioning and Boundary Value Analysis techniques –  

a. One value in the acceptable range – to be accepted by the system 
b. One value above acceptable range – to be rejected by the system 
c. One value below acceptable range – to be rejected by the system 
d. One value at the upper boundary of the acceptable range – to be 

accepted by the system 
e. One value at the lower boundary of the acceptable range– to be accepted 

by the system 
2. Size checks for all non-numeric data, one per every data item 
3. Logical testing for presence of invalid data – like two decimal points in numeric 

data, numeric and special characters in name data fields etc. 
 
Thus, the test case set for even a moderately complex unit will be voluminous. Modern 
projects are large in size and the effort required to prepare exhaustive test case set 
would be significantly high. Therefore, it is common (not always, perhaps) to prepare test 
cases where it is expected that the tester cannot intuitively figure out the test cases all 
by him/her self.  It is common to have guidelines for the following tests –  
 

1. GUI Testing 
2. Navigation Testing 
3. Negative Testing 
4. Load Testing 
5. Stress Testing 
6. Parallel and Concurrent Testing 
7. Unit Testing 

 
Organizations make use of these guidelines and avoid, not in all organizations perhaps, 
preparing test cases, exhaustively. 
 
It is not uncommon that unit testing is carried out without any test cases. Integration 
testing, system testing and acceptance testing are normally carried out against test 
cases. 



 
Test Strategy 
 
Before we can start our discussion on Test Effort Estimation, we need to understand test 
strategy. Test Strategy is concerned with unearthing as many defects as possible 
within the allocated budget of time and cost and maximizing the impact of such 
testing. 
 
Fist step in finalizing the test strategy is to set testing objectives. These could be –  
 

1. Quality Objectives – these are concerned with the level of unearthing of defects 
ranging from  

a. All defects irrespective of time or cost 
b. Almost all possible defects within the time available – cost and time are a 

criterion 
c. All possible defects within the time available – time is the main criteria 

2. Customer Acceptance Objectives – the main objective of testing to obtain 
customer sign-off so that customer pays our money 

3. Product Certification Objectives – carry out the tests specified by the customer 
and certify as requested by the client. These certifications could be – 

a. Virus and Spy-ware free 
b. Functionality 
c. Usability 
d. Comparison and relative position 
e. Product Rating 
f. Etc. 

 
In addition to objectives, the following are also part of Test Strategy 
 
1. Types of tests to be included in testing – what are the tests that have to be 

conducted to achieve the project objectives 
2. How of testing – the methodology of testing 

a. Plan and Test Case based testing or intuitive testing 
b. White Box or Black Box 
c. Manual Testing or Tool based testing 

3. Regression Testing – number of iterations for Regression Testing – only once 
or iterated till all defects are closed 

4. Criteria for successful completion of testing – is it time and cost based or 
closure of defects or until all defects are unearthed  

5. Mechanisms for defect closure and escalation when necessary 
6. Progress Reporting during the project execution 
7. Defect Analysis – such as ABC analysis, Category analysis etc – whether 

required or not 
 
Now, we are ready for a discussion on Test Effort Estimation! 
 
First - Definition of Test Estimation 
 
Test Estimation is the estimation of the testing size, testing effort, testing cost and 
testing schedule for a specified software testing project in a specified 
environment using defined methods, tools and techniques.  



 
1. Estimation – defined in the earlier chapters 
2. Testing Size – the amount (quantity) of testing that needs to be carried out. 

Some times this may not be estimated especially in Embedded Testing (that is, 
testing is embedded in the software development activity itself) and in cases 
where it is not necessary 

3. Testing Effort – the amount of effort in either person days or person hours 
necessary for conducting the tests  

4. Testing Cost – the expenses necessary for testing, including the expense 
towards human effort 

5. Testing Schedule – the duration in calendar days or months that is necessary 
for conducting the tests 

 
Now, having understood the definition of Test Estimation, we are ready for looking at the 
approaches to Test Estimation. 
 
Approaches to Test Effort estimation 
 
Now the following approaches are available for carrying out Test Effort Estimation 
 

1. Delphi Technique 
2. Analogy Based estimation 
3. Software Size Based Estimation 
4. Test Case Enumeration Based Estimation 
5. Task (Activity) based Estimation  
6. Testing Size Based Estimation 

 
 
Delphi Technique and Analogy Based Estimation are explained earlier for estimation 
of software development projects. The techniques are same for testing projects also. 
Hence these are not discussed again here. 
 
Let us look at each of the remaining techniques more closely. 
 
Software Size Based Estimation 
 
By the time a testing project is in its initiation phase, software size would have been 
available. Now we adopt this software size as the testing project size. Then we assign a 
Productivity figure (rate of achievement) for the software size to arrive at the required 
effort to execute the testing project. 
 
Let us say that it takes 2 person hours to test software of size one Function Point – using 
this norm we can arrive at the amount of effort required for the testing project based on 
the size of software to be tested. 
 
Suppose that the size of software to be tested is 1000 Function points, then, using the 
norm of 2 person hours per function point, we have 2000 person hours for testing the 
software of size 1000 Function Points. 
 



However, such norms for converting software size to effort are not available from any 
standards body and therefore are to be developed and maintained within the 
organization using historical data, adhering rigorously to a process. We have to derive 
this norm for all the software size measures used in the organization as well as maintain 
them. 
 
Merits of Software Size Based Estimation 
 
Here are the merits of this technique 
 

1. Very Simple to learn and use 
2. Very fast – takes very little time to arrive at the effort estimate 
3. If the organization derives and maintain these norms using right process, the 

results of effort estimation using this technique could be surprisingly accurate 
 
Demerits of Software Size Based Estimation 
 

1. Too simplistic – not auditable 
2. As testing size is not available, productivity cannot be derived. However, testing 

productivity can be derived against software size. 
3. Amount of testing differs depending on the application type even though the size 

may be same. For example a stand-alone software application and a web based 
software application need different amount of testing even though their size may 
be same. Hence the norm per software size may not be applicable in all cases. 

4. Organizations have to keep meticulous records and employ full-time specialists 
to derive norms and maintain them. The timesheets need to be tailored to 
capture suitable data to derive these norms accurately. Data Collection has to be 
rigorous 

 

 
We need to maintain a table like the above in the organization, to use this technique. 
Please note that the values indicated in the table are by no means validated – they are 
just indicative only. 
 
 
Test Case Enumeration based Estimation 
 
The following steps describe this technique –  
 

1. Enumerate the test cases – list down all the test cases 
2. Estimate testing effort required for each test case – use person hours or person 

days - consistently 
3. Use Best Case, Normal Case and Worst Case scenarios for estimating effort 

needed for each test case 
4. Compute Expected Effort for each case using Beta Distribution 

<-------------------------------------  Person Hours per unit size ---------------------------------------->

Type of Application Function Points Use Case Points Object Points FPA Mark II Feature Points SSU

Stand-alone 0.25 0.5 0.25 0.5 0.25 0.5

Client Server 0.3 0.65 0.3 0.65 0.3 0.65

3-tier Application 0.5 0.9 0.5 0.9 0.5 0.9

4-tier application 0.75 1.1 0.75 1.1 0.75 1.1



Best Case + Worst Case + (4 * Normal Case) / 6 

 
Sum up the – 

1. Expected times to get Expected effort estimate for the project 
2. Best-Case times to obtain best-case effort estimate 
3. Worst-Case times to obtain worst-case effort estimate 
4. Normal-Case times to obtain normal-case effort estimate 

 
The below table is an example of this method. 
 
Here is an example of Test Effort Estimation using Test Case Enumeration. PH stands 
for Person Hours. 
 

 
Merits of Test Case Enumeration Based Estimation 
 
The following are the merits of this technique –  
 

1. Auditable estimate – the estimate has adequate detail so that another peer can 
review the estimate and ensure that the estimate is comprehensive and as 
accurate as possible 

2. Fairly accurate – accuracy is ensured as all test cases are enumerated and three 
times are used to arrive at the expected effort 

3. Progress monitoring is facilitated – by marking the test cases completed and 
percentage completion can be computed easily  

4. Facilitates giving a range of values for the estimates – such as –  
a. The project can be executed with a minimum effort of so many person 

hours and a maximum of so many person hours with an expected effort of 
so many person hours. This allows the decision makers to set negotiation 
margins in their quotes 

 

<------------- Effort in PH --------------->
Test Case 

Id Test Case Description

Best 

Case

Worst 

Case

Normal 

Case Expected

US1 Setup Test Environment

US1.1 Check Test Environment 1 2 1.5 1.500

US2 install Screen recorder 0.75 1.5 1 1.042

US1.2 Ensure Defect Reporting mechanism 1.25 3 2 2.042

UI1 Login Screen on IE 0.000

UI1.1 Correct Login 0.05 0.2 0.1 0.108

UI2 Wrong id and Correct Passsword 0.07 0.2 0.1 0.112

UI1.2 Correct Id and wrong Password 0.07 0.2 0.1 0.112

UI3 Forgot Password Functionality 0.15 0.3 0.2 0.208

UF2 Login Screen on Firefox 0.000

UF2.1 Correct Login 0.05 0.2 0.1 0.108

UF3 Wrong id and Correct Passsword 0.07 0.2 0.1 0.112

UF2.2 Correct Id and wrong Password 0.07 0.2 0.1 0.112

UF4 Forgot Password Functionality 0.15 0.3 0.2 0.208

Total Effort Estimate 3.680 8.300 5.500 5.663



Demerits of Test Case Enumeration Based Estimation 
 

1. No Testing size – hence productivity can not be derived 
2. All test cases and attendant overheads need to be enumerated – takes time to 

complete the estimation 
 
Task (Activity) Based Estimation 
 
This method looks at the project from the standpoint of tasks to be performed in 
executing the project. Any project is executed in phases. Phases in a testing project 
could be –  
 

1. Project Initiation 
2. Project Planning 
3. Test Planning 
4. Test Case Design 
5. Set up Test Environment 
6. Conduct Testing 

a. Integration Testing 
b. System Testing 
c. Load Testing 
d. Etc. 

7. Log and report test results 
8. Regression Testing 
9. Prepare Test Report 
10. Project closure 

 
Of course, the phases may differ from project to project and organization to organization. 
Now each of these phases could be further broken down into tasks. Here is an example 
–  
 
Phase – Project Initiation 
 

1. Study the scope of testing and obtain clarifications if necessary 
2. Identify the Project (Test) Manager 
3. Retrieve data of past similar projects and make it part of the project dossier 
4. Prepare PIN (Project Initiation Note) and obtain approval 
5. Conduct Project Kick off meeting and hand over project dossier to project (Test) 

Manager 
 
Phase – project Planning 
 

1. Prepare Effort Estimates 
2. Determine Resource Requirements 
3. Raise Resource Request Forms 
4. Prepare Project Management Plan 
5. Prepare Configuration Management Plan 
6. Prepare Quality Assurance Plan 
7. Arrange peer review of project plans 
8. Obtain approval for project plans 
9. Baseline Project Plans 



 
We can breakdown each of the phases into their constituent tasks. Now using these 
tasks, we can carryout test effort estimation.  
 
The following are the steps in Task based effort Estimation - 
 

1. Assign durations for each of the Tasks – either in person hours or person days - 
consistently 

2. Use three time estimates – Best Case, Worst Case and Normal Case for each of 
the tasks 

3. Compute the expected time using formula  
a. [Best Case + Worst Case + (4* Normal Case)]/6 

4. Make adjustments for project complexity, familiarity with the platform, skill of the 
developers, tools usage 

5. Sum up the total effort estimate of the project 
6. Use Delphi technique to validate the estimate, if in doubt or felt necessary 

 
The below table gives an example of Task Based Effort Estimation for Testing Projects 

1. Expected times to get Expected effort estimate for the project 
2. Best-Case times to obtain best-case effort estimate 
3. Worst-Case times to obtain worst-case effort estimate 
4. Normal-Case times to obtain normal-case effort estimate 

 
Merits of Task Based Effort Estimation for Testing Projects 
 

1. This most closely reflect the way projects are executed 
2. This technique takes into consideration all the activities that are performed and 

gives effort estimates as accurately as possible 

<------------ Effort in PH ------------->

Task Id Phase Task

Best 

Case

Worst 

Case

Normal 

Case Expected

1 Test Planning Study Specifications 2 5 3 3.167

2 Test Planning Determine types of tests to be executed 0.5 1 0.65 0.683

3 Test Planning Determine Test Environment 0.5 1 0.65 0.792

4 Test Planning

Estimate Testing Project Size, Effort, Cost 

& Schedule 2 4 3 3.500

5 Test Planning Determine team size 0.5 1.25 0.75 0.917

6 Test Planning Review of Estimation 1 2 1.5 1.750

7 Test Planning Approval of Estimation 0.5 2 0.75 1.042

8 Design Test Cases Design Test Cases for Module 1 5 8 6 7.167

9 Design Test Cases Design Test Cases for Module 2 6 9 7 8.333

10 Design Test Cases Design Test Cases for Module 3 4 6 5 5.833

11 Conduct Tests Conduct Tests for Module 1 15 18 16 18.833

12 Conduct Tests Conduct Tests for Module 2 16 19 17 20.000

13 Conduct Tests Conduct Tests for Module 3 14 16 15 17.500

14 Defect Report Defect Report for Module 1 1 2 1.5 1.750

Total Effort Estimate 68.000 94.250 77.800 91.267



3. It has adequate details that makes it amenable for reviewing and auditing and 
postmortem analysis by comparing with the actual values 

4. Simple and easy to prepare an estimate 
5. Makes project progress monitoring easy by marking completed tasks and 

percentage completion can be easily computed 
6. Suitable for use in Analogy Based Test Effort Estimation also 

 
Demerits of Task Based Effort Estimation for Testing Projects 
 

1. Testing size is not computed – therefore, testing productivity can not be arrived 
at 

 
Issues in Sizing the Testing Projects 
 
When we attempt to specify a Unit of Measure, there must be a clear definition of what is 
included in it. Secondly, there must be a means to measure the size. Then there must be 
some uniformity – need not be identical – in the practices of testing, namely, preparation 
of test plans, the comprehensiveness of test cases, the types of testing carried out and 
availability of empirical data to normalize various situations to a common measure. The 
following aspects need consideration – 
 

1. Type of application – Standalone, Client-Server, Web-Based 
2. Type of testing – White Box or Black Box 
3. Stage of testing – Unit, Integration, System 
4. Purpose of testing – Reliability, client-acceptance, ensure-functionality 
5. Test case coverage – how much is covered by test cases and how much is left 

to the intuition of the tester 
6. Definition of the granularity test case – one input field is tested with five input 

values – is it one test case or five test cases? 
7. The size of the test cases at the levels of unit, integration and system vary – we 

need a normalization factor to bring them all to a common size 
8. The impact of the usage of tools and the effort needed to program them 
9. Environmental factors – the tester experience and knowledge, complexity of 

the application, resources (time and budget) allowed for testing, existence of a 
clean testing environment etc. and their impact on testing. 

10. Existence of the practice of code walkthrough before testing software, in the 
organization 

 
The literature and practices I have seen so far does not suggest that all these aspects 
are well considered and covered in defining the size measure for testing effort. 
 
One question – Is size measure necessary to estimate testing effort? No – testing effort 
can be estimated using other techniques mentioned above. 
 
But size measure is important so that comparison can be made between two projects; it 
is important to assess the reasonableness of the effort estimates. It also facilitates 
computation of Testing Productivity – rate of achievement. 
 
Who needs Test Size Estimation? 
 



1. Testing Organizations, whose mainline of business is to test other’s software 
and certify the products. Their objective is to ensure that the product meets the 
customer specifications and expectations. This set would carry out –  

a. Mainly Black Box testing 
b. Functional Testing 
c. System Testing 
d. Negative Testing 
e. Regression Testing 

2. Customers who entrusted their software development to a vendor. Their 
objective is to ensure that they are getting what they are paying for.  

 
Sizing of Testing Project 
 
The term “Test Points” is catchy and perhaps the Unit of Measure for the estimation of 
Testing size and effort. This term is being used by many persons and is popular to size 
software testing projects. Test Points can be extracted from the software size estimates. 
 
Test Point is a size measure for measuring the size of a software-testing project 
and that a Test Point is equivalent to a normalized test case. Here a test case is 
the one having one input and one corresponding output. 
 
It is common knowledge that test cases differ widely in terms of complexity and the 
activities necessary to execute it. Therefore, the test cases need to be normalized - just 
the way Function Points are normalized to one common measure using weighting 
factors. Now there are no uniformly agreed measures of normalizing the test cases to a 
common size. Also, what is the relation between other software size measures like 
Function Points, or Use Case Points etc? Would it be fair to say one Adjusted Function 
Point would result in one normalized Test Point? - again no universal agreement. 
Perhaps, we may say that one Adjusted Function Point results in one (or 1.2 or 1.3 etc.) 
 
There are many types of testing carried on software. Is there a standard saying that 
these are the tests that should be included in a Testing Projects? I am afraid - that there 
is no agreement here either. Generally - not necessarily always - a Testing Project would 
include Integration Testing, System Testing and Acceptance Testing - all using the black 
box testing technique. 
 
But the Reality could be different. 
 
The variety in applications - on which testing depends - is significantly large. The method 
for normalization between various application types is not commonly agreed to. 
 
The types of testing carried out varies from project to project. There are no uniformly 
agreed types of testing to be carried out on any given project. 
 
There is barely enough research and empirical data that accurate guidelines can be 
drawn as the profession of testing itself is very nascent. 
 
However, we may estimate Test Points converting the size estimate using a set of 
conversion factors into test points and adjust the Test Point size using various weights. 
 



Weights 
 
The following weights could be considered 
 

1. Application weight 
2. Programming language weight 
3. Weights for each type of testing, namely, 

a. Unit Testing 
b. Integration Testing 
c. System Testing 
d. Acceptance Testing (Positive Testing) 
e. Load Testing  
f. Parallel Testing 
g. Stress Testing 
h. End-to-End Testing 
i. Functional Testing Negative Testing 
j. And so on 

 
All weights are project-specific. 
 
Test Point has a weight equal to 1 when the combined weights of three tests, namely, 
Integration Testing, System Testing and Acceptance Testing is equal to 1. That is to say 
that the sum of weights of these three tests cannot be more than 1 nor less than 1. 
 
When other tests are added to the project, their weights may be assigned and added to 
Test Point weight. 
 
We need to compile weights data for all these tests and maintain them in-house by 
comparing the estimated values with actual values at the end of every testing project 
after conducting a rigorous causal analysis in each case. 
 
Testing Tools usage is expected to reduce the effort, even though there are views that 
tools would not reduce the effort for the first iteration of testing. Perhaps, but it really 
depends on the tool itself. Therefore, the weight for tools usage also may be assigned 
suitably based on the tool itself and the project at hand. A weight of 1 for tools usage 
indicates that the tool would not have any impact on the effort required for testing. A 
weigh of more than 1 indicates that the tool increases the testing effort and a weight of 
less than 1 indicates that the tool would reduce the testing effort. 
 
If we include Unit Testing in the proposed tests for the project, we need to assign 
another weight for the programming language used for developing code for the project.  
Here we mean independent Unit Testing carried out by a person who had not written the 
code in the first place. The reasons for this additional weight are –  
 

1. Unit testing is white box testing – that is from within the code 
2. The development environment for different language is different from one 

another and differs in the amount of effort required for the testing project 
 
The following are the steps in computing the testing project size in Test Points. We are 
using the software size as the basic input to this model. 
 



1. Use an existing software development size  
2. Convert the software size into Unadjusted Test Points (UTP) using a conversion 

factor which is based on the application type 
3. Compute a Composite Weight Factor (CWF) 

a. Sum up all individual weights of selected tests 
b. Multiply it by the weight of the Application Weight 
c. Multiply it by the language weight if Unit Testing is selected 
d. Multiply it by Tools Weight if Tools Usage is selected 

4. Unadjusted Test Points are multiplied by CWF to obtain the testing size in Test 
Points size 

5. The Productivity Factor indicates the amount of time for a test engineer to 
complete the testing of one Test Point 

6. Testing Effort in Person Hours is computed by multiplying Test Point Size by the 
Productivity Factor. 

 
The below table illustrates the Test Points estimation 
 

 
 
The below table gives the various test weights used in computing the CWF in the above 
table 
 

 
 
Merits of Test Point Estimation 
 

1. Size is estimated – makes it amenable to productivity computation, comparison 
and benchmarking 

2. Size makes it useful in Analogy Based estimation 
 
Demerits of Test Point Estimation 
 

Test Weights

1 Functional Test 0.35

2 System Test 0.3

3 Acceptance Test 0.2

4 Virus-Free Test 0.2

5 Spy-ware-free test 0.2

Total Weight 1.25

Sl. No Aspect Test Points

1 Product Size in FP 2500

2 Conversion Factor (TP per FP) 4.5

3 Unadjusted Test Points 11250

4 Application weight for Cleint-Server Application 1.1

5 Composite Weight Factor (CWF) 1.375

6 Adjusted Test Points 15468.75

7 Productivity Factor in Person Hours /TP 0.2

8 Test Effort in Person Hours 3093.75



1. There is universally accepted definition of what is a Test Point 
2. Perhaps, not as simple as other Test Effort Estimation methods 
3. No universally accepted or benchmarked data available on various weights used 

in the method. These have to developed and maintained adhering to rigorous 
methodology and record keeping. This puts overheads on the organization 

4. Timesheet has to be oriented for deriving required data 
 
Well, nothing that is good ever comes free or easily. So is the case with Test Point 
estimation for sizing Testing projects – one needs to spend effort and time to set the 
norms – as in perhaps, any other case. 
 
Final words about Test Effort Estimation 
 
Here is an area where further work is necessary, obviously. However, there are methods 
that make it possible to estimate effort required for executing Testing projects. Test 
Points are slowly emerging for sizing Software Testing projects. 
 
It is suggested that the project is scheduled, just the way, software development projects 
are scheduled, resources allocated and the schedule is re-worked with resource 
constraints and only then the schedule and effort are committed. 
 
It is also suggested that the presentation of Test Effort Estimate also be subjected to the 
format suggested for Software Development Project Estimates to ensure that all aspects 
of estimation are communicated to the decision makers. 
 
 
 
 
 
 
 
 


